Fault detection effectiveness of metamorphic relations developed for testing supervised classifiers

Published in 2019 IEEE International Conference On Artificial Intelligence Testing (AITest), 2019

Recommended citation: P. Saha and U. Kanewala, "Fault Detection Effectiveness of Metamorphic Relations Developed for Testing Supervised Classifiers,"2019 IEEE International Conference On Artificial Intelligence Testing (AITest),Newark, CA, USA, 2019, pp. 157-164,



In machine learning, supervised classifiers are used to obtain predictions for unlabeled data by inferring prediction functions using labeled data. Supervised classifiers are widely applied in domains such as computational biology, computational physics and healthcare to make critical decisions. However, it is often hard to test supervised classifiers since the expected answers are unknown. This is commonly known as the oracle problem and metamorphic testing (MT) has been used to test such programs. In MT, metamorphic relations (MRs) are developed from intrinsic characteristics of the software under test (SUT). These MRs are used to generate test data and to verify the correctness of the test results without the presence of a test oracle. Effectiveness of MT heavily depends on the MRs used for testing. In this paper we have conducted an extensive empirical study to evaluate the fault detection effectiveness of MRs that have been used in multiple previous studies to test supervised classifiers. Our study uses a total of 709 reachable mutants generated by multiple mutation engines and uses data sets with varying characteristics to test the SUT. Our results reveal that only 14.8% of these mutants are detected using the MRs and that the fault detection effectiveness of these MRs do not scale with the increased number of mutants when compared to what was reported in previous studies.